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Externally induced phase transition for random inhomogeneous 
polymers 
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Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg, D-3400 Gottingen, 
Federal Republic of Germany 

Received 31 August 1988 

Abstract. We consider an ensemble of frozen linear sequences with intrachain long-range 
interactions in the good solvent region. The sequences are made up of two kinds of 
monomers and they are subject to the influence of an external attractive field. We study 
the phase transition caused by adsorption of the coil below a critical temperature. Making 
use of the replica method to average over macroscopic samples, we get the temperature 
dependence for the dispersion of polymer sizes. 

1. Introduction 

The statistical mechanics of phase transitions for linear polymers made up of different 
kinds of elementary constituents is of paramount importance for its biological implica- 
tions [ 13. A folded state is required in a biopolymer for a specific function. Often the 
folding process is externally induced by trapping the coil in a potential well by means 
of an attractive field which causes adsorption [2, 31. In previous work along these 
lines (see, for example, [4]) elastic heteropolymers with no intrachain interactions 
were considered. Thus, the ‘beads-on-the-string’ transition-operator formulation holds. 
We shall examine a more realistic situation with intrachain volume-excluded interac- 
tions in the good solvent region. In this case, the bending of the chain becomes a 
non-Markovian process [4-61. The basic aim is to study the temperature dependence 
of the polymer statistics by a process of averaging over macroscopic samples. This is 
done in order to characterise the two fluctuation regimes which depend on the spatial 
correlation range for the ensemble of polymer strands. 

The transition-operator formalism as applied in our context poses some non-trivial 
problems due to the non-Markovian nature of the problem. The operators and sequence 
of Green functions on which they act are not statistically independent, as is the case 
for an elastic chain subject only to interaction with the field [4]. 

2. The replica method 

We shall resort to the standard conformational space-functional integral formalism 
proposed by Edwards [7]. The Hamiltonian for the disordered chain is made up of 
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five contributions: 

H ( x ( t ) )  = H e +  H"'+ H"'+ H F +  H '  

H .  ( * I  - 2  - IoN loN dt  dt '  u (  t, r')6(x( t )  - x (  t ' ) )  

= two-body volume-excluded interactions (3) 

= three-body interactions (4) 

H F =  loN ( F , ( x ( t ) ) / T )  dr =attractive external field term 

H'= dRf(R)S(x(N)  - R )  =virtual field contribution. (6) 

Here, t is the contour variable indicating the position of the chain, x( t )  denotes 
the position vector of the chain segment located between t and t + 6t,  U( t ,  t ' )  is the 
bare two-body volume-excluded coupling constant, C is the bare Flory interaction 
constant for the three-body contribution, F,(x( t ) )  is the external field exerted at position 
t on the chain and f ( R )  is the virtual field controlling the endpoint of the chain (the 
only relevant case consists in taking the limit f =  0). 

For simplicity, we shall consider the case of two different kinds of monomers only. 
The strands are assumed to be randomly constructed. Thus, a specific primary sequence 
is determined unambiguously by a specific realisation of the random variable s( t ) ,  
defined by 

I 

(s(t)) = 0 (7)  

and 

1 if the monomer in the segment of the chain 
containing t is of the same kind as that in 
the segment containing t '  (8) b otherwise 

(s(t)s(t')) = 

where ( ) denotes average over the ensemble of primary structures and we have assumed 
that s( t )  can only take the values *l depending on the kind of monomer at position t. 

The Hamiltonian depends on the specific realisation of s ( t ) .  Consequently, we 
define 

(9) 

where A and B are unrenormalised constants. A localised field representing the 
trapping of the coil by the adsorption well is given by 

u(  t, t ' )  = U + A(s( t )  + s( t ' ) )  + Bs( t ) s (  1 ' )  

F , ( x ( t ) ) / T =  -ln[l+ T - ' ( F e , , + A s ( t ) ) 8 ( x ( t ) ) ]  (10) 
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i.e. the field is localised at x=O. The constants Fe, and A have the dimensions of 
temperature. The external field must obviously be attractive in order to induce a phase 
transition. As the temperature is raised beyond a certain critical value T,, the well 
F, /T  no longer holds the chain and a different correlation range regime ( C R R ) ,  the 
coil, emerges. 

The fixed-end partition function is 

Z( N )  = I dm(x(t))  exp(-H(x(t))  ( 1 1 )  
x(O)=O 

where m(x( t ) )  is a measure in the space of paths. Thus, the Green function G( N,  R )  
is given by 

dZ(N) /d f (R) l f=o= G ( N ,  R ) = 6 ( x ( N ) - R )  (12) 

where the bar indicates an average over all conformations for a given configuration 
(thermal average). 

We shall denote by Z( N ) M ,  M positive integer, the partition function for M identical 
replicas of an arbitrarily chosen strand. This function can be extended analytically 
for M real. The following relation will prove very useful: 

( I n Z ( N ) ) =  lim ( I / M ) ( ( z ( N ) ~ ) - I )  
M-0 

= (a/aM)(z(~)’) lM=o.  (13) 
The replica symmetry-breaking thus appears in the computation of (Z( N)‘ ) .  Let 

a, p be dummy indices labelling replicas, then we have 

where Z,,,, is the partition function for an effective Hamiltonian corresponding to a 
homopolymer, i.e. it contains no disorder. Thus, the effective Hamiltonian is [ 6 ]  

r N  f N  
H,*= H~+H:,+H~+;V, ,  Jo J dt  d t ’6(x( t ) -x( t ’ ) )  

0 

+&JON 3 !  JON loN dt dtrdt”6(x(t)-x(t ‘ ) )S(x(t j -x(t ’ ’ ) )  (15)  

where 

CeR= C -3A2 

and 

Veff = U + 2A2 l i ~ ~  Io” I f =  d t. 
R,,=O 

The function 2,” for M integer is the partition function averaged over the ensemble 
of primary structures for M replicas of a strand of length t whose endpoints coincide. 

In order to determine the CRR for the effective Hamiltonian, we need to introduce 
a different representation. We start by discretising the domain of the contour variable, 
introducing a partition: 

x( j )  = xj ( j = 1 , 2  , . . . ,  N ) .  (18) 



3140 A Ferna'ndez 

We also introduce transition operators defined by 

4 G ( j - l , x 1 - , ) = G ( j , x , ) ,  

Thus, for j = 1,2,3,4,  we have 
r 

R G  ( j - 1, x, - ) = exp( - F (  x, )/ T )  dx,- g ( x, - I, - G ( j - 1, x, - 1 J 
where F is a field with A = 0 and the coupling between links is assumed identical: 

Here a is the average distance between adjacent links. For j 3 4, the transition operators 
are different since, we must consider long-range interactions of the repulsive type (we 
denote them by W,): 

F G ( J - 1 ,  x,=i) 
t 

=exp(-F(x,)/T) dx,-l g(x, - X I - * )  I 
x J 'fi [ s 2 ' * ' ( x , , x , _ , ) G ( j - T , X , - , )  dx,-,] 

x n [ni3'(x,, x,-,, x,-. ) G ( j  - 7, 

T = 4  

/ - I  

7.7 =4  

x G(j-~',x,-, ,)dx,-,dx,-, ,]G(j-l ,~,-,).  

For clarification, (22) can be rewritten as 

% G ( j - l ,  x,-,)= @h(2)h (3 )G( j - l , x , - l )  

where h(2', h"' are the two- and three-body interaction transition operators respectively. 
Their kernels are given by 

n"'(x,, x/-7) = exp(-iVe*&,) (24) 

and 

(25) 

We are left with diffusion equations (20) andA(22). However, the functions G(J, x,) 
do not form a Markov chain since the operator W, ( j  > 4) and the vector G (  j - 1, 
are not statistically independent. 

The globular state is characterised by the spectrum of W ,  for N large. The signature 
for that specific CRR is that the largest real eigenvalue, A, is not an accumulation point 
in the spectrum but represents a discrete level. The temperature T, at which the phase 
transition between the two CRR occurs is the temperature at which the level A splits 
off from the continuum part of the spectrum. The situation of discrete largest eigenvalue 
is preserved for T < T,. Since the term corresponding to the largest eigenvalue domi- 
nates the Green function, the free energy A F (  N, R )  for the effective homopolymer in 

* 
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the globular CRR is given by 

A F (  N ,  R ) = - T In A = - TN In A. (26) 

Thus, the square end-to-end distance averaged over all conformations (thermal 
average) for the globular C R R  is 

- R 2  exp( -AF(  N, R ) /  T )  d R  R2 = 
Z ( N )  

whereas for the random coil C R R  it is given by 

w h e E G (  N, p )  is the Fourier transform of G (  N, R ) .  The dispersion relation (variance) 
for R 2  over the ensemble of primary structures, V ( R 2 ) ,  is a quantity of the utmost 
importance in the design of light scattering experiments in order to establish the 
sensitivity of the configuration to the primary sequence. In a neighbourhood of the 
phase transition we have 

- -  
V ( ? ) = ( ( R 2 - ( R 2 ) ) 2 ) =  lim 

M -0  

A perturbative analysis gives, for the random coil regime, 

N2A2(4+ T )  

1 2 8 ~ ’  
V ( R 2 )  = 

6 

4 

0 

-0.2 0 0.2 
4 - b  

Figure 1. Calculation of the variance for 2 over the ensemble of primary sequences. 
Choice of parameters: a* = 100 A 2  = mean-square length of a link; N = L x lo3; U =fN-’’2; 
A=“-1/2 ; B = N - I .  External field: FcR = 270 K, A = 10 K, 7, = 340 K: 

b, - b = ( T, - T ) /  T 

V ( R L ) ” 2 / ( 2 )  = p. 
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3. Phase transition 

The relevant order parameter for the phase tran$ion can be taken as the limit for N 
very large of Jhe distance d N  between A = A (  W,) and the continuous part of the 
spectrum of W N .  

Direct inspection of figure 1 provides evidence of the clear distinction between the 
two correlation range regimes. The globular state, on the RHS of the figure, is far more 
sensitive to the primary structure, as reflected by the considerably larger value of the 
relative variance. On the other hand, the coil state is insensitive to changes in the 
primary structure and its relative variance is almost independent of the length N. The 
theoretical curves produced are to be regarded as ‘thermodynamic’ curves. In practice, 
unless the cooling down is performed with extreme care (approaching a transformation 
made up  of sequential equilibrium states), we would get a ‘kinetic’ metastable curve. 
That is so since each sequence will use its specific trick for folding into a metastable 
state. These states have finite lifetime and will eventually decay to the equilibrium 
state. It should be stressed that a ‘kinetic’ folding would lead, in a macroscopic sample, 
to a higher value of /3 in the globular state. Thus, a fast-cooling curve should lie above 
the one presented in figure 1. 
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